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Universality and scaling for the structure factor in dynamic order-disorder transitions
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The universal form for the average scattering intensity from systems undergoing order-disorder transitions is
found by numerical integration of the Langevin dynamics. The result is nearly identical for simulations
involving two different forms of the local contribution to the free energy, supporting the idea that the model A
dynamical universality class includes a wide range of local free-energy forms. An absolute comparison with no
adjustable parameters is made to the forms predicted by theories of Kawasaki-Yalabik-Gunton, Ohta-Jasnow-
Kawasaki, and Mazenko. The numerical results are well described by the Ohta-Jasnow-Kawasaki theory,
except in the crossover region between scattering dominated by domain geometry and scattering determined by
Porod’s law.[S1063-651X98)04411-Q

PACS numbes): 64.60.My, 64.60.Cn, 81.30.Md

[. INTRODUCTION though processes occurring at early times may mask this be-
havior. Both of these universality classes are important.
Phase ordering by quenching from a region of the phas&lowever, the work reported here is restricted to noncon-
diagram where a material is uniform to one where severagerved systems, for which more detailed theoretical results
phases coexist at equilibrium provides an important techare available.
nique for creating multiphase materials that are inhomoge- Here scaling and universality in phase ordering are tested
neous on mesoscopic length scales. Since the macroscoply comparing numerical solutions of the Langevin equation
properties of such materials can be quite different from thosévolving two different forms for the local part of the free-
of the constituent phases, and depend sensitively on the menergy functional: they* Ginzburg-Landau form and a
soscopic structure, a solid understanding of pattern formatioRiecewise-linear triangular form. The numerical details are
in phase-ordering systems is important to several branches gfesented in Sec. Il. The agreement between the structure
materials science. Examples include precipitation strengtherf@ctors found for both forms is discussed in Sec. Ill. Com-
ing in metals[1] and fabrication of glassdg]. bined with a mapping to sharpen the interfaces, numerical
Universality allows one to describe the structure and dy-olution of the Langevin equation allows comparison to ana-
namical properties of diverse phase-ordering systems usintic theories for the structure factor, without fitting param-
models that only take into account properties such as consegters. In Sec. IV four theories are reviewed and compared to
vation laws and order-parameter symmetries. Two importarhe numerical results. The Ohta-Jasnow-Kawas@kiK)
universality classes involve only local relaxational dynamicstheory agrees with the simulations at small and large wave
and an order parameter that can be represented as a scal@€tors, with noticeable deviations only for intermediate
field [3,4]. The order parameter is not conserved in the firstvave vectors. The simulation results clearly support this
class, called model A. This can be used, for example, téheory over the Kawasaki-Yalabik-Gunton theory, which
model anisotropic magnets and alloys undergoing orderonly differs from OJK by a scale factor. The two theories by
disorder transitions. In the second class, called model B, thMazenko are qualitatively correct, but the zeroth-order
order parameter is a locally conserved quantity, and relaxtheory agrees with the simulations better than the second-
ation proceeds by diffusion away from regions of highorder theory. Section V is a brief summary of our results.
chemical potential. When hydrodynamic modes and strain
effects can be ignored, binary mixtures and alloys are de- Il. NUMERICAL MODEL
Scrg)ceﬁir?g g]laénﬁssgthesis that the behavior of the syste A general model of phase ordering can be _constructed
. ; Mom a free energy composed of a local term with two de-
over a large range of length scales can be described in terms L d local term representing the con-
of a single characteristic lengiR A necessary condition for ggnerate minima and a nonioca P 9
TS . tribution from spatial fluctuationf3],
scaling is thalR must be well separated from any other mi-
croscopic or macroscopic length scales present in the system.
For many phase-ordering processes, the characteristic length f[l//(r,T)]:f dr{f{y(r,n)]+3|Vy(r, 0%, @
has been found to have a power-law dependence on the time
7 elapsed since the quendR;- 7". In nonconserved systems where the scalar order-parameter figdd,7) depends on po-
the power law is readily observable with=3. For con- sitionr and timer. The dynamics of the model are governed
served systems the late-time growth exponentisz, al- by a Langevin equation
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FIG. 1. Comparison of the two local parts of the free-energy functibpa(r, )] used in this study: the Ginzburg-Landau fofsolid
curve and a piecewise linear functigdashed lines Both potentials give the same estimate for the structure factor, indicating that the model
A universality class does not depend on the specific forrh of

aY(r,7) SH (r,7)] choice quite different from the Ginzburg-Landau form is a
ar Su(r,7) +\/E77(Y,T), 2 piecewise-linear triangular double well, which is not har-
' monic near the minima. This form is compared to #he

where the first term on the right-hand side corresponds t&inzburg-Landau potential in Fig. 1. It has been chosen to
deterministic relaxation toward a minimum of the free en-match the Ginzburg-Landau potential at the extrema, i.e.,
ergy, and the second term represents thermal fluctuation§(+1)=—7 and f(0)=0. The Langevin equation for this
The thermal noise is assumed to be Gaussian, with zer@otential is
mean and correlations given by

-3 y<-1
<77(r17')77(r 17-)>:5(r_r )5(7_7) (3) &l//(r,T) - (r )+V2w(r ) +4i' _1$¢<0
= T ) —
The strength of the noise is given by the normalized tem- aT g -1 O=sy<+1
peraturee, which is the only parameter in the model after +1oy=+1
4 = .

rescaling the order parameter, space, and f{iseThe pri- ®)
mary effect of thermal fluctuations is to introduce random-

ness at early timef6]. In the late-time scaling regime the  The simulations with both potentials were conducted on
dynamics of this model are controlled by a zero-temperaturgquare lattices with periodic boundary conditions and lattice

fixed point, and thermal fluctuations can be ignored. constantAr=1. The system size considered wag=L,
The local part of the free-energy functiondlis usually ~ =| =1024. The Laplacian was approximated by an eight-
chosen to have the Ginzburg-Landau form point form[7], and a simple Euler integration scheme with

A7=0.05 was used to collect data every 25 time units up to
—_1,2 1,4
fly(r.n]=—24°(r. 1)+ 397(r.7), 4 4 maximum of r=2000. Results for the TDGL equation
which is a double well with degenerate minima. The corre-were averaged over 100 realizations; only ten realizations of
sponding dynamical equation is the plequ|se—I|near model were needed to confirm its agree-
ment with the TDGL results.

J ,
¢((9r7 il =(1+V2)y(r,7)— 3(r,n)+Jen(r,7), (5 IIl. UNIVERSALITY

which is commonlv called the time-dependent Ginzbura- The average structure of the system at a specific time after
Y P Ythe quench can be described by the order-parameter correla-
Landau(TDGL) equation.

. . tion function
To test universality for nonconserved scalar order-

parameter systems, comparisons need to be made with a C(r—=r'|,m)=(p(r,D(r’, 7)), 7)
model different from the standard TDGL model. The new

model still needs to follow the nonconserved dynamics ofwhere(:--) denotes averaging over the ensemble of quenches
Eq. (2) for a scalar order parameter with two degenerateas well as the volume. When scaling holds, the correlation
equilibrium values. One obvious aspect to change is the forrfunction can be expressed in terms of a time-independent
of the local part of the free-energy functionél(r,7)]. A master curve
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1

c(r,7)=C(1), ®) 10

wherer =r/R(7). While microscopy techniques can be used
to measureC, scattering experiments probe its Fourier trans-
form S(k, 7), called the structure factor. The structure factor

(a)

is also related to a time-independent form w0 |
S(k,7)=R%(7)F(q), (G -
s Fou(@
_ _ _ 0% . Fi(a)
whereq=kR(7) andd is the dimension of the system. e Filq)
When infinitely sharp domain interfaces are randomly ori- oy Sinzburg-Landau
ented throughout the system, the snrafbrm of the corre- 10°

lation function is linearC(r)=1—ar +--- , wherea is pro-

portional to the surface area to volume ratio for the domains .

[8]. This corresponds to a power-law decay of the scalec 1 10

structure factor at large, F(q)=(27/a)q 91, called q

Porod’s law[4,8]. These results are valid for d/much

smaller than the characteristic length, but much larger that

the domain interface width. 6
The assumption of infinitely sharp interfaces is used in

most situations, e.g., experimental and analytic studies. B

design, the domain interface in the simulations has a width o

aboutv2. We compensate for this by using a nonlinear map- __

ping [9] of yAr,7) to =1 before finding the Fourier transform =

wn

#(k,7) [7]. The structure factor is c
4
Sk, 1) =(| ¢k, I, (10
where|y(k, 7)|? is the scattering intensity associated with a 3

particular domain patterg{(r,7), and(:--) represents averag-

ing over the ensemble of quenches. The simulation result
used to estimate the structure factor were found by “onion-
shell” binning of the two-dimensional scattering intensity

into a one-dimensional functiofY] of k, averaging over all FIG. 2. Simulation estimates for both the Ginzburg-Lan¢ay
trials, and then scaling the result using the average wavand piecewise-lineaf¢) models of(a) the universal form of the
vector of each bin. structure factor andb) scaling plot emphasizing the Porod’s law

Including noise in the simulation has three drawbackstail at largeq. The estimates incorporate all data for wave vectors
The first is purely practical: generating Gaussian randon<0.5 and timer>500. The scaling forms for the two models
numbers fory is computationally expensive. The second agr_ee_wnh each other, supportln_g the idea that dynamical univer-
drawback has a physical basis. Oft#] showed that ther- sality is not affec_ted by the detailed _shape of the local part of the
mal fluctuations in the TDGL equation retard growth of the ffe€-€nergy density[y]. The OJK(solid curve, Mazenko zeroth-
characteristic length and cause a broadening(af). Third, ~ °'der (dashed curve and Mazenko second-ordédotted curve
the thermal noise causes the structure factor to cross over Egeones are included for reference. The simulations show better

S P . . agreement with the OJK theory than with the other theories.
the equilibriumqg™ < behavior for largeqg, thus masking the
g~ (9*1) Porod tail. For these reasons, we have simulated the
TDGL equation at zero temperature with the early-time fluc-trapping phenomenon, so noise withr 0.1 was included in
tuations implemented by an initial condition whegér,  simulations of the piecewise-linear model.
=0) consists of independent random numbers distributed An estimate ofF(q) was constructed for each local form
uniformly on[—0.1,+0.1]. by combining the estimates at different simulation times with

On the other hand, thermal fluctuations are essential fothe restrictionsr>500 andk<0.5. Fork larger than this,
simulating the piecewise-linear model. For this modelrat lattice effects become important. The estimate$ (d) for
=0, the domain growth stops after a finite time. The timeboth models are presented in Fig. 2, wRir) = V27 (see
until the evolution stops, as well as the corresponding charSec. IV). The agreement seen in Figap a log-log plot ofF
acteristic length, depends on the random initial condition. Ifvs g, is very good. The Porod tail at largecan be high-

a system which has stopped coarsening is briefly heated, thighted by plottingq®**F(q) againstg, as shown in Fig.
growth continues for a while and then stops again. In addi2(b). This was found independently of the structure factor,
tion, making the potential shallower prolongs growth andusing q=kR(7) before the binning and averaging. The
yields larger domains. The arrested growth appears to resuligreement is quite good well into the power-law tail. The
from trapping into metastable configurations associated witltlaim that the details of the local part of the free-energy
finite wavelength corrugations on the interfaces. A constantfunctional do not influence the universal behavior appears
moderate level of thermal noise completely prevents thisvell supported by the numerical models.
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IV. ANALYTIC THEORIES wherev=r/Ry(7) is the scaled length. The characteristic

length isRy(7) = V4uor with gy an undetermined param-

Several theories for the universal form of the scaling ter. Th rrelation function must obev the boundar N
function for nonconserved systems exist. They can be comg ef- 1he correfation function must obey the boundary con-

pared to the numerical integration of the TDGL equationdition Co(0)=1. As a consequence, the third term in Eq.
without adjustable parameters. (14) acquires a 4 singularity atv =0. This singularity must

One theory was developed by Ohta, Jasnow, and K acancel against thed(— 1)/v factor in the second term, result-
wasaki[10,11]. The OJK theory starts from a diffusion equa- ing in the requirement thad Co(v)/dv = y2/m(d—1) atv

tion for a Gaussian auxiliary field(r,7), =0. Therefore, the first derivative @y(v) atv=0 is not
available to be used as the second, independent constant in
au(r,) 5 the solution of Eq.(14). Instead, one must determine the
o, bV, (1D value of g such thatCy(v) becomes integrable as—o.

Ford=1 the asymptotic form agrees with that found analyti-

where the interfaces in the inhomogeneous material are d&ally for th? I'<inetic !Sif‘g model with Qlau_ber dynamics
fined to be the set of such thatu(r,7)=0, and the order- [20,21, while in the limit d—c the functionC, becomes
parameter field is obtained by the mapping(r,7) identical with the OJK resultl8]. For finited>1, determin-
=sgru(r,7)]. The coefficienD =4py is the diffusion con- ing Cy is equivalent to the numerical solution of a nonlinear
stant for the interface. The factpg=(d—1)/d results from  eigenvalue problem17,22,23.

assuming that the interfaces are randomly oriented. As time Recently, Bray and co-workef#,24] and Yeung, Oono,
progresses, the characteristic size of the single-phase domaind Shinozak[25], criticized the use of Gaussian fields in
grows asRg(7)=+Dr, in accordance with the Lifshitz- constructing theories of phase ordering. Noting this criticism,
Allen-Cahn theory of domain growth driven by surface ten-Mazenko [19] expanded his theory to include a(r,7)

sion [12,13. The two-point correlation function for the Wwhose distribution is an expansion around a Gaussian. The
order-parameter field in this model has the simple analyti¢heory with the second-order correction, here marked with
form the subscript 2, produces a new differential equation for the

scaled correlation functio@,(v),
2

2 ) r
Coi(r,mn= p arcsw{ ex;{ - 2R2,(7)

Since the system is isotropic, the Fourier transform of this . .
correlation function can be written in terms of a radial inte- +tan{z [Co(v)+ Hz(v)]]
gral over a Bessel function, and the scaling form of the struc- 2

ture factor is[11,14)]

. 12 d2C,(v) ( d—1) dCy(v)
7t v+ ——
dv v dv

T gz(v)
- = =0. (15
2 (2m)92 (= Y ey
Fow(d)=— f dw wexpw?)—1]"%2 co E[Cz(UH‘Hz(U)]
T q 0
X (qw) 7923 (qw). (13)  HereH,(v) is a new function governed by
Except for the dimensional dependencepgfin R(7), this dH, B bCy—V(CH)2+ agazb(1—b)
result agrees with the perturbation calculation by Kawasaki, dv 1-b : (16)

Yalabik, and GuntonfKYG) [15].
Another theoretical approach to phase ordering has beegnerec)=dC,/dv and
developed by Mazenko and co-work¢i€—19. This theory
also starts with a Gaussian auxiliary fiel@r, 7). In contrast T — P _
to the OJK theoryu(r,7) is interpreted as the distance from b=-> Hz(v)tah{g [Ca(v) +Ha(v)];. 17)
r to the closest interface, and it is mapped onto the order-

parameter field using the equilibrium interface prOflleAcorrected eigenvalug,# u results, and the characteristic

#(r,7)=hedu(r,7)). The characteristic length is then de- el
fined in terms of the rms distance to the nearest inten‘acelfngth becomesRy(7) = y4u,7 with the scaled lengthy

. _ =r/R,(7). A new eigenvaluey, is introduced, and the re-
Ro(7) = Vr(u(r,7)?). Here the subscript 0 is used to denote_, .. : :
the zeroth-order theory developed in Reff6—14. Using sulting double eigenvalue problem must solved numerically

the G i ti the TDGL ti 26l
€ Laussian properties 0“'7'_)’ e 1DLL equation can While experimental tests ultimately determine the validity
be used to find a closed, nonlinear partial differential equa

: : . : . of any theory, finding the characteristic lengghpriori is
tion which describes the scaling form of the correlation func'difficu>llt for eiperimegts as well as many simuFI)ation tech-
tion ’

nigues. The characteristic length may be taken as a fitting

— parameter, with which data can be fit well to all three theo-

N dCo(v) ctad T S 20 ries. Such fitted comparisons for Monte Carlo simulations

Hou dv anz o()|=0, made by OJK11] showed quantitative disagreements in the
(14)  tail of the correlation function. Later Oono and P{i#7]

d2Cy(v) [d—1
dv? +(
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FIG. 3. Scaling of the structure factor for the two-dimensional time-dependent Ginzburg-Landau model. The scaling vagiable is
=kRoik(7). The simulation data for different times scale quite well, using the characteristic IBagthr) = V4pq7, €xcept at large wave
vectors where lattice effects are important. The curves represent the theoretical scaling forms discussed in the (eslidQMMazenko
zeroth order(dashegl and Mazenko second ord@totted. (a) For small values ofj (q<3), the simulations agree quantitatively with the
OJK theory.(b) Plot emphasizing the Porod’s law tail at largiethe trend with time indicates that the OJK theory gives a better estimate of
this amplitude than either of the Mazenko theories. The theoretical amplitude of the second-order theory is lower than that for the first-order
theory.

used cell dynamics simulations to show that the deviationswo forms, which are, in fact, noticeably different, as we will
might be caused by the nonzero interface width present isee below. The question of how well these theories predict
simulations. Blundell, Bray, and Sattlg24] also used cell the scaling functiorC(r) therefore remains open.

dynamics simulations to test the theories. To compare their Numerical simulation of the TDGL equation can be com-
simulation results to theory without fitting, they reducedpared to the theories without fitting parameters, since ana-
R(7) to a parametric variable by plotting values for the cor-lytic forms for R(t) are known. We have chosen to work in
relation function for the order parameter against values foterms ofRg;«, sinceR, andR, depend on numerically de-
the correlation function for the square of the order parametetermined eigenvalues. The TDGL estimates for the two-
for many (, 7). The simulation results plotted this way show dimensionalF(q) for several times are presented in Fig. 3,
good scaling, but the two Gaussian theories give the sama&long with the predictions of the theories. Figur@3is a
result for this particular scaling functidi24,25. As a con-  log-log plot, showing good collapse of the simulation data.
sequence, this method does not provide a strong test of th@oncerning the difference between the theories of OJK and
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KYG, much better agreement with the simulations is foundOJK), while it shares with OJK the inability to correctly
using the factopy predicted by OJK, so we only consider describe the decay of the order-parameter autocorrelation
that theory. In Fig. 8) the obvious differences between the function[7,19,28.

theories shown are the magnitude at smalhd the behavior

near the shoulder at intermediade For both of these fea- V. CONCLUSIONS

tures, the simulatiqn data agree significantly better with the Numerical simulations of the TDGL equation have been
OJK theory than with those of Mazenko. used to confirm the universality of model A systems with
Figure 3b) highlights the power-law tail at largg. The  different forms for the local free-energy contribution. With
scaling of the simulation data is quite good through the largeéio adjustable parameters, the scaling form of the structure
peak for all of the times presented here. Where the simulafactor from simulations is found to agree quantitatively with
tion data scale, they agree very well with the OJK theorythe OJK theory at scaled wavevectars 3. The simulation
There is a noticeable second peak in the OJK and secondesults agree much better with OJK than KYG, indicating
order Mazenko theories that is absent in the zeroth-orddhat the scale factgsy=(d—1)/d should be included in the
Mazenko theory. Unfortunately, the simulation data cannotharacteristic length. At largg, the numerical results have
be used to test the presence of a second peak because theyn@ yet entered the asymptotic scaling regime, even at our
not scale in this region for the practically attainable simula-latest simulation times. However, the trend is toward OJK
tion times. Instead, a pronounced trough is seen, which deand away from both the Mazenko theories. Although the
cays with time. Simulations for significantly larger systemsOJK theory has been found here to describe well the scaling
and longer times would be needed to achieve asymptotif,orm of the structure factor, it does not cor_rectly describe the
scaling in this region. decay of the order-parameter autocorrelation fundtigg].

At values ofq higher than this, the scaling regime also has Mazenko’s theories describe the estimated scaling form

not been reached, preventing an estimate of the Porod anq_nly qualitatively. Interestingly, the zeroth-order theory

: - : ._'gives better agreement with simulations than does the
plitude (27/«) for the simulations. However, a clear trend in second-order theory. Since, aside frahe1, d=2 is ex-

the data is apparent, indicating an amplitude which is signifi, ected to be the dimension where the theoretical results are

;:r?ntly hlglhe;:r tthatlrr: those gredécte?h by bﬁth ':)hf Mazeilnkopsfhe most different, computational cost has lead us to forgo
eornes. In fact, tne second-oraer theory nas the smaller Ferree_dimensional simulations at this time. Another aspect of

rod amplitude. This is a result of the relationspi9] universality not considered here is the effect of anisotropy
[a(a-+2) 30].
_ q2(02+2) 19 [30]
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