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Universality and scaling for the structure factor in dynamic order-disorder transitions
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The universal form for the average scattering intensity from systems undergoing order-disorder transitions is
found by numerical integration of the Langevin dynamics. The result is nearly identical for simulations
involving two different forms of the local contribution to the free energy, supporting the idea that the model A
dynamical universality class includes a wide range of local free-energy forms. An absolute comparison with no
adjustable parameters is made to the forms predicted by theories of Kawasaki-Yalabik-Gunton, Ohta-Jasnow-
Kawasaki, and Mazenko. The numerical results are well described by the Ohta-Jasnow-Kawasaki theory,
except in the crossover region between scattering dominated by domain geometry and scattering determined by
Porod’s law.@S1063-651X~98!04411-0#

PACS number~s!: 64.60.My, 64.60.Cn, 81.30.Md
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I. INTRODUCTION

Phase ordering by quenching from a region of the ph
diagram where a material is uniform to one where seve
phases coexist at equilibrium provides an important te
nique for creating multiphase materials that are inhomo
neous on mesoscopic length scales. Since the macrosc
properties of such materials can be quite different from th
of the constituent phases, and depend sensitively on the
soscopic structure, a solid understanding of pattern forma
in phase-ordering systems is important to several branche
materials science. Examples include precipitation strength
ing in metals@1# and fabrication of glasses@2#.

Universality allows one to describe the structure and
namical properties of diverse phase-ordering systems u
models that only take into account properties such as con
vation laws and order-parameter symmetries. Two impor
universality classes involve only local relaxational dynam
and an order parameter that can be represented as a s
field @3,4#. The order parameter is not conserved in the fi
class, called model A. This can be used, for example
model anisotropic magnets and alloys undergoing ord
disorder transitions. In the second class, called model B,
order parameter is a locally conserved quantity, and re
ation proceeds by diffusion away from regions of hi
chemical potential. When hydrodynamic modes and str
effects can be ignored, binary mixtures and alloys are
scribed by this model.

Scaling is the hypothesis that the behavior of the sys
over a large range of length scales can be described in te
of a single characteristic lengthR. A necessary condition fo
scaling is thatR must be well separated from any other m
croscopic or macroscopic length scales present in the sys
For many phase-ordering processes, the characteristic le
has been found to have a power-law dependence on the
t elapsed since the quench,R;tn. In nonconserved system
the power law is readily observable withn5 1

2 . For con-
served systems the late-time growth exponent isn5 1

3 , al-
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though processes occurring at early times may mask this
havior. Both of these universality classes are importa
However, the work reported here is restricted to nonc
served systems, for which more detailed theoretical res
are available.

Here scaling and universality in phase ordering are tes
by comparing numerical solutions of the Langevin equat
involving two different forms for the local part of the free
energy functional: thec4 Ginzburg-Landau form and a
piecewise-linear triangular form. The numerical details a
presented in Sec. II. The agreement between the struc
factors found for both forms is discussed in Sec. III. Co
bined with a mapping to sharpen the interfaces, numer
solution of the Langevin equation allows comparison to a
lytic theories for the structure factor, without fitting param
eters. In Sec. IV four theories are reviewed and compare
the numerical results. The Ohta-Jasnow-Kawasaki~OJK!
theory agrees with the simulations at small and large w
vectors, with noticeable deviations only for intermedia
wave vectors. The simulation results clearly support t
theory over the Kawasaki-Yalabik-Gunton theory, whi
only differs from OJK by a scale factor. The two theories
Mazenko are qualitatively correct, but the zeroth-ord
theory agrees with the simulations better than the seco
order theory. Section V is a brief summary of our results

II. NUMERICAL MODEL

A general model of phase ordering can be construc
from a free energy composed of a local term with two d
generate minima and a nonlocal term representing the c
tribution from spatial fluctuations@3#,

F@c~r ,t!#5E dr $ f @c~r ,t!#1 1
2 u¹c~r ,t!u2%, ~1!

where the scalar order-parameter fieldc~r ,t! depends on po-
sition r and timet. The dynamics of the model are governe
by a Langevin equation
5501 © 1998 The American Physical Society
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FIG. 1. Comparison of the two local parts of the free-energy functionalf @c(r ,t)# used in this study: the Ginzburg-Landau form~solid
curve! and a piecewise linear function~dashed lines!. Both potentials give the same estimate for the structure factor, indicating that the m
A universality class does not depend on the specific form off.
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]c~r ,t!

]t
52

dF@c~r ,t!#

dc~r ,t!
1Aeh~r ,t!, ~2!

where the first term on the right-hand side corresponds
deterministic relaxation toward a minimum of the free e
ergy, and the second term represents thermal fluctuati
The thermal noise is assumed to be Gaussian, with z
mean and correlations given by

^h~r ,t!h~r 8,t8!&5d~r2r 8!d~t2t8!. ~3!

The strength of the noise is given by the normalized te
peraturee, which is the only parameter in the model aft
rescaling the order parameter, space, and time@5#. The pri-
mary effect of thermal fluctuations is to introduce rando
ness at early times@6#. In the late-time scaling regime th
dynamics of this model are controlled by a zero-tempera
fixed point, and thermal fluctuations can be ignored.

The local part of the free-energy functionalF is usually
chosen to have the Ginzburg-Landau form

f @c~r ,t!#52 1
2 c2~r ,t!1 1

4 c4~r ,t!, ~4!

which is a double well with degenerate minima. The cor
sponding dynamical equation is

]c~r ,t!

]t
5~11¹2!c~r ,t!2c3~r ,t!1Aeh~r ,t!, ~5!

which is commonly called the time-dependent Ginzbu
Landau~TDGL! equation.

To test universality for nonconserved scalar ord
parameter systems, comparisons need to be made w
model different from the standard TDGL model. The ne
model still needs to follow the nonconserved dynamics
Eq. ~2! for a scalar order parameter with two degener
equilibrium values. One obvious aspect to change is the f
of the local part of the free-energy functional,f @c(r ,t)#. A
to
-
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-
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-
a

f
e
m

choice quite different from the Ginzburg-Landau form is
piecewise-linear triangular double well, which is not ha
monic near the minima. This form is compared to thec4

Ginzburg-Landau potential in Fig. 1. It has been chosen
match the Ginzburg-Landau potential at the extrema,
f (61)52 1

4 and f (0)50. The Langevin equation for this
potential is

]c~r ,t!

]t
5Aeh~r ,t!1¹2c~r ,t!25

2 1
4 , c,21

1 1
4 , 21<c,0

2 1
4 , 0<c,11

1 1
4 , c>11.

~6!

The simulations with both potentials were conducted
square lattices with periodic boundary conditions and latt
constantDr 51. The system size considered wasLx5Ly
5L51024. The Laplacian was approximated by an eig
point form @7#, and a simple Euler integration scheme wi
Dt50.05 was used to collect data every 25 time units up
a maximum oft52000. Results for the TDGL equatio
were averaged over 100 realizations; only ten realization
the piecewise-linear model were needed to confirm its ag
ment with the TDGL results.

III. UNIVERSALITY

The average structure of the system at a specific time a
the quench can be described by the order-parameter cor
tion function

C~ ur2r 8u,t!5^c~r ,t!c~r 8,t!&, ~7!

where^¯& denotes averaging over the ensemble of quenc
as well as the volume. When scaling holds, the correlat
function can be expressed in terms of a time-independ
master curve
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C~r ,t!5C̄~ r̄ !, ~8!

wherer̄ 5r /R(t). While microscopy techniques can be us
to measureC, scattering experiments probe its Fourier tran
form S(k,t), called the structure factor. The structure fac
is also related to a time-independent form

S~k,t!5Rd~t!F~q!, ~9!

whereq5kR(t) andd is the dimension of the system.
When infinitely sharp domain interfaces are randomly o

ented throughout the system, the small-r̄ form of the corre-
lation function is linear,C̄( r̄ )512a r̄ 1¯ , wherea is pro-
portional to the surface area to volume ratio for the doma
@8#. This corresponds to a power-law decay of the sca
structure factor at largeq, F(q)5(2p/a)q2(d11), called
Porod’s law @4,8#. These results are valid for 1/q much
smaller than the characteristic length, but much larger t
the domain interface width.

The assumption of infinitely sharp interfaces is used
most situations, e.g., experimental and analytic studies.
design, the domain interface in the simulations has a widt
about&. We compensate for this by using a nonlinear ma
ping @9# of c~r ,t! to 61 before finding the Fourier transform
ĉ(k,t) @7#. The structure factor is

S~k,t!5^uĉ~k,t!u2&, ~10!

whereuĉ(k,t)u2 is the scattering intensity associated with
particular domain patternc~r ,t!, and^¯& represents averag
ing over the ensemble of quenches. The simulation res
used to estimate the structure factor were found by ‘‘oni
shell’’ binning of the two-dimensional scattering intensi
into a one-dimensional function@7# of k, averaging over all
trials, and then scaling the result using the average w
vector of each bin.

Including noise in the simulation has three drawbac
The first is purely practical: generating Gaussian rand
numbers forh is computationally expensive. The seco
drawback has a physical basis. Ohta@10# showed that ther-
mal fluctuations in the TDGL equation retard growth of t
characteristic length and cause a broadening ofF(q). Third,
the thermal noise causes the structure factor to cross ov
the equilibriumq22 behavior for largeq, thus masking the
q2(d11) Porod tail. For these reasons, we have simulated
TDGL equation at zero temperature with the early-time flu
tuations implemented by an initial condition wherec(r ,t
50) consists of independent random numbers distribu
uniformly on @20.1,10.1#.

On the other hand, thermal fluctuations are essential
simulating the piecewise-linear model. For this model aT
50, the domain growth stops after a finite time. The tim
until the evolution stops, as well as the corresponding ch
acteristic length, depends on the random initial condition
a system which has stopped coarsening is briefly heated
growth continues for a while and then stops again. In ad
tion, making the potential shallower prolongs growth a
yields larger domains. The arrested growth appears to re
from trapping into metastable configurations associated w
finite wavelength corrugations on the interfaces. A const
moderate level of thermal noise completely prevents
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trapping phenomenon, so noise withe50.1 was included in
simulations of the piecewise-linear model.

An estimate ofF(q) was constructed for each local form
by combining the estimates at different simulation times w
the restrictionst.500 andk,0.5. For k larger than this,
lattice effects become important. The estimates ofF(q) for
both models are presented in Fig. 2, withR(t)5A2t ~see
Sec. IV!. The agreement seen in Fig. 2~a!, a log-log plot ofF
vs q, is very good. The Porod tail at largeq can be high-
lighted by plottingqd11F(q) againstq, as shown in Fig.
2~b!. This was found independently of the structure fact
using q5kR(t) before the binning and averaging. Th
agreement is quite good well into the power-law tail. T
claim that the details of the local part of the free-ener
functional do not influence the universal behavior appe
well supported by the numerical models.

FIG. 2. Simulation estimates for both the Ginzburg-Landau~s!
and piecewise-linear~L! models of~a! the universal form of the
structure factor and~b! scaling plot emphasizing the Porod’s la
tail at largeq. The estimates incorporate all data for wave vect
k,0.5 and timet.500. The scaling forms for the two mode
agree with each other, supporting the idea that dynamical uni
sality is not affected by the detailed shape of the local part of
free-energy densityf @c#. The OJK~solid curve!, Mazenko zeroth-
order ~dashed curve!, and Mazenko second-order~dotted curve!
theories are included for reference. The simulations show be
agreement with the OJK theory than with the other theories.
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IV. ANALYTIC THEORIES

Several theories for the universal form of the scali
function for nonconserved systems exist. They can be c
pared to the numerical integration of the TDGL equati
without adjustable parameters.

One theory was developed by Ohta, Jasnow, and
wasaki@10,11#. The OJK theory starts from a diffusion equ
tion for a Gaussian auxiliary fieldu(r ,t),

]u~r ,t!

]t
5D¹2u~r ,t!, ~11!

where the interfaces in the inhomogeneous material are
fined to be the set ofr such thatu(r ,t)50, and the order-
parameter field is obtained by the mappingc(r ,t)
5sgn@u(r ,t)#. The coefficientD54rd is the diffusion con-
stant for the interface. The factorrd5(d21)/d results from
assuming that the interfaces are randomly oriented. As t
progresses, the characteristic size of the single-phase do
grows asROJK(t)5ADt, in accordance with the Lifshitz
Allen-Cahn theory of domain growth driven by surface te
sion @12,13#. The two-point correlation function for the
order-parameter field in this model has the simple anal
form

COJK~r ,t!5
2

p
arcsinFexpS 2

r 2

2ROJK
2 ~t! D G . ~12!

Since the system is isotropic, the Fourier transform of t
correlation function can be written in terms of a radial in
gral over a Bessel function, and the scaling form of the str
ture factor is@11,14#

FOJK~q!5
2

p

~2p!d/2

q E
0

`

dw wd@exp~w2!21#21/2

3~qw!12d/2Jd/2~qw!. ~13!

Except for the dimensional dependence ofrd in R(t), this
result agrees with the perturbation calculation by Kawas
Yalabik, and Gunton~KYG! @15#.

Another theoretical approach to phase ordering has b
developed by Mazenko and co-workers@16–19#. This theory
also starts with a Gaussian auxiliary fieldu(r ,t). In contrast
to the OJK theory,u(r ,t) is interpreted as the distance fro
r to the closest interface, and it is mapped onto the ord
parameter field using the equilibrium interface profi
c(r ,t)5ceq„u(r ,t)…. The characteristic length is then d
fined in terms of the rms distance to the nearest interfa
R0(t)5Ap^u(r ,t)2&. Here the subscript 0 is used to deno
the zeroth-order theory developed in Refs.@16–18#. Using
the Gaussian properties ofu(r ,t), the TDGL equation can
be used to find a closed, nonlinear partial differential eq
tion which describes the scaling form of the correlation fun
tion

d2C̄0~v !

dv2 1S d21

v
1m0v D dC̄0~v !

dv
1tanFp2 C̄0~v !G50,

~14!
-

a-
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-

where v5r /R0(t) is the scaled length. The characteris
length is R0(t)5A4m0t with m0 an undetermined param
eter. The correlation function must obey the boundary c
dition C̄0(0)51. As a consequence, the third term in E
~14! acquires a 1/v singularity atv50. This singularity must
cancel against the (d21)/v factor in the second term, resul
ing in the requirement thatdC̄0(v)/dv5A2/p(d21) at v
50. Therefore, the first derivative ofC̄0(v) at v50 is not
available to be used as the second, independent consta
the solution of Eq.~14!. Instead, one must determine th
value of m0 such thatC̄0(v) becomes integrable asv→`.
For d51 the asymptotic form agrees with that found analy
cally for the kinetic Ising model with Glauber dynamic
@20,21#, while in the limit d→` the functionC̄0 becomes
identical with the OJK result@18#. For finited.1, determin-
ing C̄0 is equivalent to the numerical solution of a nonline
eigenvalue problem@17,22,23#.

Recently, Bray and co-workers@4,24# and Yeung, Oono,
and Shinozaki@25#, criticized the use of Gaussian fields
constructing theories of phase ordering. Noting this criticis
Mazenko @19# expanded his theory to include au(r ,t)
whose distribution is an expansion around a Gaussian.
theory with the second-order correction, here marked w
the subscript 2, produces a new differential equation for
scaled correlation functionC̄2(v),

d2C̄2~v !

dv2 1S m2v1
d21

v D dC̄2~v !

dv

1tanH p

2
@C̄2~v !1H̄2~v !#J

2
p

2

H̄2~v !

cos2H p

2
@C̄2~v !1H̄2~v !#J 50. ~15!

Here H̄2(v) is a new function governed by

dH̄2

dv
5

bC̄282A~C̄28!21a0q2b~12b!

12b
, ~16!

whereC̄285dC̄2 /dv and

b52
p

2
H̄2~v !tanH p

2
@C̄2~v !1H̄2~v !#J . ~17!

A corrected eigenvaluem2Þm0 results, and the characterist
length becomesR2(t)5A4m2t with the scaled lengthv
5r /R2(t). A new eigenvalueq2 is introduced, and the re
sulting double eigenvalue problem must solved numerica
@26#.

While experimental tests ultimately determine the valid
of any theory, finding the characteristic lengtha priori is
difficult for experiments, as well as many simulation tec
niques. The characteristic length may be taken as a fit
parameter, with which data can be fit well to all three the
ries. Such fitted comparisons for Monte Carlo simulatio
made by OJK@11# showed quantitative disagreements in t
tail of the correlation function. Later Oono and Puri@27#
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FIG. 3. Scaling of the structure factor for the two-dimensional time-dependent Ginzburg-Landau model. The scaling variaq
5kROJK(t). The simulation data for different times scale quite well, using the characteristic lengthROJK(t)5A4rdt, except at large wave
vectors where lattice effects are important. The curves represent the theoretical scaling forms discussed in the text: OJK~solid!, Mazenko
zeroth order~dashed!, and Mazenko second order~dotted!. ~a! For small values ofq (q,3), the simulations agree quantitatively with th
OJK theory.~b! Plot emphasizing the Porod’s law tail at largeq, the trend with time indicates that the OJK theory gives a better estima
this amplitude than either of the Mazenko theories. The theoretical amplitude of the second-order theory is lower than that for the fi
theory.
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used cell dynamics simulations to show that the deviati
might be caused by the nonzero interface width presen
simulations. Blundell, Bray, and Sattler@24# also used cell
dynamics simulations to test the theories. To compare t
simulation results to theory without fitting, they reduc
R(t) to a parametric variable by plotting values for the c
relation function for the order parameter against values
the correlation function for the square of the order param
for many (r ,t). The simulation results plotted this way sho
good scaling, but the two Gaussian theories give the s
result for this particular scaling function@24,25#. As a con-
sequence, this method does not provide a strong test o
s
in

ir

r
r

e

he

two forms, which are, in fact, noticeably different, as we w
see below. The question of how well these theories pre
the scaling functionC̄( r̄ ) therefore remains open.

Numerical simulation of the TDGL equation can be com
pared to the theories without fitting parameters, since a
lytic forms for R(t) are known. We have chosen to work i
terms ofROJK, sinceR0 andR2 depend on numerically de
termined eigenvalues. The TDGL estimates for the tw
dimensionalF(q) for several times are presented in Fig.
along with the predictions of the theories. Figure 3~a! is a
log-log plot, showing good collapse of the simulation da
Concerning the difference between the theories of OJK a
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KYG, much better agreement with the simulations is fou
using the factorrd predicted by OJK, so we only conside
that theory. In Fig. 3~a! the obvious differences between th
theories shown are the magnitude at smallq and the behavior
near the shoulder at intermediateq. For both of these fea
tures, the simulation data agree significantly better with
OJK theory than with those of Mazenko.

Figure 3~b! highlights the power-law tail at largeq. The
scaling of the simulation data is quite good through the la
peak for all of the times presented here. Where the sim
tion data scale, they agree very well with the OJK theo
There is a noticeable second peak in the OJK and sec
order Mazenko theories that is absent in the zeroth-o
Mazenko theory. Unfortunately, the simulation data can
be used to test the presence of a second peak because th
not scale in this region for the practically attainable simu
tion times. Instead, a pronounced trough is seen, which
cays with time. Simulations for significantly larger system
and longer times would be needed to achieve asympt
scaling in this region.

At values ofq higher than this, the scaling regime also h
not been reached, preventing an estimate of the Porod
plitude ~2p/a! for the simulations. However, a clear trend
the data is apparent, indicating an amplitude which is sign
cantly higher than those predicted by both of Mazenk
theories. In fact, the second-order theory has the smaller
rod amplitude. This is a result of the relationship@19#

a25a0

Aq2~q212!

q211
, ~18!

whereq2 is the second-order eigenvalue. Sincea2.a0 for
any value ofq2 , the predicted Porod amplitude is necessa
smaller for the second-order theory. The disagreement w
simulations increasing with the order of the theory is a
true for the decay of the order-parameter autocorrela
function, although estimates for both of Mazenko’s theor
are better than that for OJK@7,19,28#.

Very recently, Emmott presented a perturbation exp
sion about the OJK form for the correlation function, with
lowest-order term of order 1/d2 @29#. Our numerical results
presented here suggest that the OJK theory may provid
good starting point for a more complete theory of the dyna
ics of phase separation in systems with nonconserved o
parameter. However, we note that the lowest-order cor
tion provided by Emmott’s approach would produce
change in the Porod amplitude~which is well described by
n-
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OJK!, while it shares with OJK the inability to correctl
describe the decay of the order-parameter autocorrela
function @7,19,28#.

V. CONCLUSIONS

Numerical simulations of the TDGL equation have be
used to confirm the universality of model A systems w
different forms for the local free-energy contribution. Wi
no adjustable parameters, the scaling form of the struc
factor from simulations is found to agree quantitatively w
the OJK theory at scaled wavevectorsq,3. The simulation
results agree much better with OJK than KYG, indicati
that the scale factorrd5(d21)/d should be included in the
characteristic length. At largeq, the numerical results hav
not yet entered the asymptotic scaling regime, even at
latest simulation times. However, the trend is toward O
and away from both the Mazenko theories. Although t
OJK theory has been found here to describe well the sca
form of the structure factor, it does not correctly describe
decay of the order-parameter autocorrelation function@7,28#.

Mazenko’s theories describe the estimated scaling fo
only qualitatively. Interestingly, the zeroth-order theo
gives better agreement with simulations than does
second-order theory. Since, aside fromd51, d52 is ex-
pected to be the dimension where the theoretical results
the most different, computational cost has lead us to fo
three-dimensional simulations at this time. Another aspec
universality not considered here is the effect of anisotro
@30#.
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